969 research outputs found

    Tertiary education policy: a case study of student interpretations and personal effects for school leavers : a thesis presented in partial fulfilment of the requirements for the degree of Master of Arts in Education, Education Department, Massey University

    Get PDF
    Tertiary education policy is produced in a political context with the purpose of bringing about specific planned effects. The manner in which individuals actively process policy messages within their own particular context of experience results in policy effects at times differing from projected effects for various individuals. The thesis is based on a case study research project which examines the decision making processes of ten senior secondary school students from a single secondary school in their final year of schooling. The research aims to identify the messages that students receive from Government tertiary policy and to evaluate the extent to which these messages are incorporated into individual decision making. Additional factors which influence the post school destination eventually chosen by students are also discussed. The personal effects of tertiary education policy differ from its ostensibly stated effects for most students. It is suggested that principles of 'fairness' and 'greater personal choice' are not realised for the majority of students. Instead, the position, disposition and communication effects of each student are shown to influence their post school destination. While all students respond to aspects of policy in the manner that it is envisaged that they would, the agency of individuals in making rational decisions within the structures of their own circumstances means that policy effects differ for each student

    Fast directional continuous spherical wavelet transform algorithms

    Full text link
    We describe the construction of a spherical wavelet analysis through the inverse stereographic projection of the Euclidean planar wavelet framework, introduced originally by Antoine and Vandergheynst and developed further by Wiaux et al. Fast algorithms for performing the directional continuous wavelet analysis on the unit sphere are presented. The fast directional algorithm, based on the fast spherical convolution algorithm developed by Wandelt and Gorski, provides a saving of O(sqrt(Npix)) over a direct quadrature implementation for Npix pixels on the sphere, and allows one to perform a directional spherical wavelet analysis of a 10^6 pixel map on a personal computer.Comment: 10 pages, 3 figures, replaced to match version accepted by IEEE Trans. Sig. Pro

    Assessing the relationship between spectral solar irradiance and stratospheric ozone using Bayesian inference

    Full text link
    We investigate the relationship between spectral solar irradiance (SSI) and ozone in the tropical upper stratosphere. We find that solar cycle (SC) changes in ozone can be well approximated by considering the ozone response to SSI changes in a small number individual wavelength bands between 176 and 310 nm, operating independently of each other. Additionally, we find that the ozone varies approximately linearly with changes in the SSI. Using these facts, we present a Bayesian formalism for inferring SC SSI changes and uncertainties from measured SC ozone profiles. Bayesian inference is a powerful, mathematically self-consistent method of considering both the uncertainties of the data and additional external information to provide the best estimate of parameters being estimated. Using this method, we show that, given measurement uncertainties in both ozone and SSI datasets, it is not currently possible to distinguish between observed or modelled SSI datasets using available estimates of ozone change profiles, although this might be possible by the inclusion of other external constraints. Our methodology has the potential, using wider datasets, to provide better understanding of both variations in SSI and the atmospheric response.Comment: 21 pages, 4 figures, Journal of Space Weather and Space Climate (accepted), pdf version is in draft mode of Space Weather and Space Climat

    Hierarchical Bayesian Detection Algorithm for Early-Universe Relics in the Cosmic Microwave Background

    Full text link
    A number of theoretically well-motivated additions to the standard cosmological model predict weak signatures in the form of spatially localized sources embedded in the cosmic microwave background (CMB) fluctuations. We present a hierarchical Bayesian statistical formalism and a complete data analysis pipeline for testing such scenarios. We derive an accurate approximation to the full posterior probability distribution over the parameters defining any theory that predicts sources embedded in the CMB, and perform an extensive set of tests in order to establish its validity. The approximation is implemented using a modular algorithm, designed to avoid a posteriori selection effects, which combines a candidate-detection stage with a full Bayesian model-selection and parameter-estimation analysis. We apply this pipeline to theories that predict cosmic textures and bubble collisions, extending previous analyses by using: (1) adaptive-resolution techniques, allowing us to probe features of arbitrary size, and (2) optimal filters, which provide the best possible sensitivity for detecting candidate signatures. We conclude that the WMAP 7-year data do not favor the addition of either cosmic textures or bubble collisions to the standard cosmological model, and place robust constraints on the predicted number of such sources. The expected numbers of bubble collisions and cosmic textures on the CMB sky within our detection thresholds are constrained to be fewer than 4.0 and 5.2 at 95% confidence, respectively.Comment: 34 pages, 18 figures. v3: corrected very minor typos to match published versio

    The discovery and preliminary thermoluminescence dating of two Aboriginal cave shelters in the Selwyn Ranges, Queensland

    Get PDF
    Two apparently undisturbed cave shelters near Selwyn in the Selwyn Ranges in Queensland were discovered by one of us (G.G.) during 1977. The first of these, referred to as Site 1 is located at Lat. 21°23'; Long. 140°32'. The second referred to as Site 2, is located approximately lO km SE of the first. Rock paintings were present in both shelters but were not recorded in detail

    Evolution of the far-infrared luminosity functions in the Spitzer Wide-area Infrared Extragalactic Legacy Survey

    Full text link
    We present new observational determination of the evolution of the rest-frame 70 and 160 micron and total infrared (TIR) galaxy luminosity functions (LFs) using 70 micron data from the Spitzer Wide-area Infrared Extragalactic Legacy Survey (SWIRE). The LFs were constructed for sources with spectroscopic redshifts only in the XMM-LSS and Lockman Hole fields from the SWIRE photometric redshift catalogue. The 70 micron and TIR LFs were constructed in the redshift range 0<z<1.2 and the 160 micron LF was constructed in the redshift range 0<z<0.5 using a parametric Bayesian and the vmax methods. We assume in our models, that the faint-end power-law index of the LF does not evolve with redshifts. We find the the double power-law model is a better representation of the IR LF than the more commonly used power-law and Gaussian model. We model the evolution of the FIR LFs as a function of redshift where where the characteristic luminosity, L∗L^\ast evolve as \propto(1+z)^{\alpha_\textsc{l}}. The rest-frame 70 micron LF shows a strong luminosity evolution out to z=1.2 with alpha_l=3.41^{+0.18}_{-0.25}. The rest-frame 160 micron LF also showed rapid luminosity evolution with alpha_l=5.53^{+0.28}_{-0.23} out to z=0.5. The rate of evolution in luminosity is consistent with values estimated from previous studies using data from IRAS, ISO and Spitzer. The TIR LF evolves in luminosity with alpha_l=3.82^{+0.28}_{-0.16} which is in agreement with previous results from Spitzer 24 micron which find strong luminosity evolution. By integrating the LF we calculated the co-moving IR luminosity density out to z=1.2, which confirm the rapid evolution in number density of LIRGs and ULIRGs which contribute ~68^{+10}_{-07} % to the co-moving star formation rate density at z=1.2. Our results based on 70 micron data confirms that the bulk of the star formation at z=1 takes place in dust obscured objects.Comment: 17 pages, 14 figure

    Binary quasars

    Full text link
    Quasar pairs are either physically distinct binary quasars or the result of gravitational lensing. The majority of known pairs are in fact lenses, with a few confirmed as binaries, leaving a population of objects that have not yet been successfully classified. Building on the arguments of Kochanek, Falco & Munoz (1999), it is shown that there are no objective reasons to reject the binary interpretation for most of these. In particular, the similarity of the spectra of the quasar pairs appears to be an artifact of the generic nature of quasar spectra. The two ambiguous pairs discovered as part of the Large Bright Quasar Survey (Q 1429-053 and Q 2153-0256) are analysed using principle components analysis, which shows that their spectral similarities are not greater than expected for a randomly chosen pair of quasars from the survey. The assumption of the binary hypothesis allows the dynamics, time-scales and separation distribution of binary quasars to be investigated and constrained. The most plausible model is that the quasars' activity is triggered by tidal interactions in a galatic merger, but that the (re-)activation of the galactic nuclei occurs quite late in the interaction, when the nuclei are within 80+/-30 kpc of each other. A simple dynamical friction model for the decaying orbits reproduces the observed distribution of projected separations, but the decay time inferred is comparable to a Hubble time. Hence it is predicted that binary quasars are only observable as such in the early stages of galactic collisions, after which the quiescent super-massive black holes orbit in the merger remnant for some time.Comment: 12 pages, 12 figure

    (Lack of) Cosmological evidence for dark radiation after Planck

    Get PDF
    We use Bayesian model comparison to determine whether extensions to Standard-Model neutrino physics primarily additional effective numbers of neutrinos and/or massive neutrinos are merited by the latest cosmological data. Given the significant advances in cosmic microwave background (CMB) observations represented by the Planck data, we examine whether Planck temperature and CMB lensing data, in combination with lower redshift data, have strengthened (or weakened) the previous findings. We conclude that the state-of-the-art cosmological data do not show evidence for deviations from the standard (ΛCDM) cosmological model (which has three massless neutrino families). This does not mean that the model is necessarily correct in fact we know it is incomplete as neutrinos are not massless but it does imply that deviations from the standard model (e.g., non-zero neutrino mass) are too small compared to the current experimental uncertainties to be inferred from cosmological data alone
    • …
    corecore